If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+40t+380=0
a = -16; b = 40; c = +380;
Δ = b2-4ac
Δ = 402-4·(-16)·380
Δ = 25920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25920}=\sqrt{5184*5}=\sqrt{5184}*\sqrt{5}=72\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-72\sqrt{5}}{2*-16}=\frac{-40-72\sqrt{5}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+72\sqrt{5}}{2*-16}=\frac{-40+72\sqrt{5}}{-32} $
| A=1/2h(61+62) | | a+4=14+3a | | 10(2y+2)-1=2(8y-8) | | 17-2f=4(3f+9) | | 6m+2m+9m-5= | | 6(m-1)-23=14m-37 | | w2=-9 | | 9y2-49=0 | | 6x-12+x/2=1 | | 20=7.5-x(0.5) | | 3x−(2x+7)=13 | | 5=7.5-x(0.5) | | x+2=3/4 | | 6-3a=2 | | 13x−12x=4−11 | | F(x)=-7/8x-6 | | 4(3x+5)=-5(4x-5) | | 0.16(y-6)+0.08y=0.14y-0.01(30) | | .6(52x)=77.7 | | 5x+5=45+3x | | 0.7-11.1p=-12.3p-13.1 | | 3(x-6)-20=-53 | | 5-(10x+2)=25-x+3x | | 13-8w=-4-6w-17 | | -(2/3a-1/3)+5/3a=-4 | | -q-11=2q=4 | | x2-43x-462=0 | | 2(6x-5)14=0 | | 8x+8=-40x-7 | | 6.21+13.7v+10.91=12.8v+17.66 | | 3/5n+9/10=-1/5n-23 | | x2-43-462=0 |